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On small-time expansion of nonlinear free surface problems
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Abstract. The small-time expansion of the 2-D problem of a heaving semi-submerged circular cylinder, starting
from rest, is analyzed. The first three terms of the small-time expansion of the outer solution (away from the
cylinder) are developed. A logarithmic singularity is found for the second derivative in time of the surface elevation
at the intersection point. This singularity is of second order in the heaving velocity of the cylinder, and the inner
expansion developed for the linear wavemaker problem therefore does not cover this case. The problem of the
horizontal motion of the semi-submerged cylinder is analyzed as well. For the case with the initial condition for the
velocity potential chosen as zero on the free surface, the logarithmic singularity found for the wavemaker is
recovered. Selecting the initial condition as a vanishing normal velocity on the free surface leads to a solution where
the singularity appears in the fifth derivative in time of the free-surface elevation. The solution of this problem
shows the characteristic behavior of formation of asymmetry, which finally would lead to formation of lee waves.
The inner solution of the problem of the heaving cylinder is discussed, showing that the oscillatory behavior
reported for the wavemaker problem appears in the present solution as well.

Introduction

During the last ten to fifteen years numerical simulation of nonlinear free surface problems,
formulated in terms of potential theory, and solved according to the semi-Lagrangian scheme
introduced by Longuet-Higgins and Cokelet [1], has been thoroughly investigated, and has
been applied to a number of problems. The subject of the present paper is not this
simulation procedure as such, but rather an approach to some of the problems related to the
choice of initial values when starting the simulation process. Furthermore, the discussion will
be limited to the occurrence of possible singularities at the intersection point between the
free surface and a surface-piercing body. These singularities appear when formulating the
solution in terms of a Taylor series in time, with space-dependent coefficients, which actually
corresponds to keeping the spacial coordinates fixed, while letting the time approach zero.
This, in turn, can be regarded as the outer solution of the problem, valid far away from the
intersection point. It is established in the literature (Peregrine [2], Chwang [3], Lin [4]) that
the singular behavior for the 2-D wavemaker, starting impulsively from rest, is given in terms
of a log(z) singularity in the complex velocity (u - iv) at the intersection point. The fact that
this singularity grows increasingly worse for the higher derivatives in time confirms that this
solution forms an outer expansion. Chwang [3] claims, on the basis of his Eulerian
description, that the singularity will not be present in the fluid domain after a finite time has
elapsed. This statement can be rejected on the basis that Newman's (see Lin [4]) analysis,
which is based on a nonlinear Lagrangian scheme, gives the same singular behavior for the
particle at the intersection point.

The singularity appears when the time is allowed to approach zero, while the spacial
coordinates are of finite order, and then letting the spacial point approach the intersection
point. In other terms: it appears as the inner expansion of the outer solution. Roberts [5],
and later Joo et al. [6], have solved the linear initial value problem for the 2-D wavemaker,
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valid in the entire domain, and have shown that the inner solution is found in terms of a
smooth function with rapidly oscillating wiggles in time (and/or space) on top of this curve,
and that the outer expansion reflects the logarithmic singularity. Joo et al. [6] found that the
wiggles of the inner solution were suppressed when surface tension was introduced.
Computing the inner solution is not the main subject of the present paper, but a discussion
of the behavior of this solution, in view of the present findings, will be given at the end of the
paper.

There are problems which show a considerably worse singular behavior for small times
than the log(z) singularity at the intersection point. Heaving circular cylinders, initially less
than half submerged, have a strong singularity at the intersection point (see for instance
Milne-Thomson [7]) §6.51). The singularity becomes a "square-root singularity" (corre-
sponding to the solution for the flat plate) as the cylinder initially is completely out of the
water. Miloh [8] has shown that the corresponding "square-root singularity" appears in the
three-dimensional problem of a heaving sphere. Greenhow [9] has approached the 2-D
nonlinear entry and re-entry problem of the less-than-half submerged circular cylinder
numerically, reproducing the experimentally observed jet ejected from the area close to the
intersection point. The inner problem for these cases has not been approached yet, but it is
unlikely that the singularity would be completely removed, as was the case for the 2-D
wavemaker.

There are other configurations which, at first sight, seem well behaved from a singularity
point of view. One is the second-order diffraction problem of a vertical circular cylinder
(with radius a), for which a controversy about a possible singularity at the intersection curve
between the free surface and the cylinder was settled by Miloh [10]. The general problem of
the possible singularity has been treated by Sclavounos [11].

A second configuration is the initially semi-submerged circular cylinder in heaving motion
starting from rest, which will be discussed in the present paper. In this case it seems that no
particular problems appear; the boundary conditions at the two intersecting boundaries are
in correspondence, and thus no singularity should be present, even to second order for the
stationary problem (Sclavounos [11]). This configuration has been used as a test case for
nonlinear simulation procedures (Faltinsen [12], Vinje and Brevig [13]) and the solution for
small times is thus of some interest, and will be investigated in the following.

A third configuration, which also will be looked into, is the one with a semi-submerged
circular cylinder starting a surging motion from rest. This problem corresponds roughly to
that introduced by Grosenbaugh and Yeung [14] in their numerical nonlinear simulation of
the bow wave problem.

The inner problem for the heaving cylinder will be briefly discussed, and at the end of the
paper some concluding remarks about the impact of the present findings for numerical
simulations will be given.

Heaving motion of the half submerged cylinder

The problem is formulated in terms of 2-D potential flow and as an initial value problem,
with the motion starting impulsively from rest. The initial conditions are given as follows (see
Fig. 1):

F =0 for y=O and r>a (1)
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T= -Vx forr=aandy< O, (2)

where V is the impulsive vertical velocity of the cylinder. The initial complex potential,
wo(z)l,=O, is well known, obtained from the vertical dipole:

wo(z) = D + i 0 = -i Va2
/z, (3)

where z =x + iy.
Assuming that w(z, t) is given by a Taylor series in time:

w(z, ) 1 2 w(z, o) t2
w(z, t) = w(z, ) + at t + 2 at 2 (4)

the corresponding boundary-value problems are found for the time derivatives at time t = 0
of the potential and of the stream function. The boundary conditions on the free surface are
given by the dynamic condition as:

D"(p)
Dtn =, nO, for y=O and r>a and t=O, (5)Dt(

which states that the pressure is zero (for small times) on this material surface. From the
kinematic boundary condition on the cylinder we get the following:

Dn( + V(t)x)
=0 for r=a and y<O. (6)Dt"

The last equation is based on the assumption that once on the cylinder the fluid particles will
remain on the cylinder. This is not necessarily the case, but is in correspondence with the
assumption that the free surface forms a material surface. As an alternative, the Eulerian
formulation, stating that ( + V(t). x) would not change when moving with the cylinder,
could have replaced Eq. (6).

The condition that all the derivatives in time of w(z, t) have to be analytic functions of z
inside the fluid domain (but not necessarily on the boundary) is introduced as well.
Furthermore, their derivatives with respect to z have to vanish faster than 1/z at infinity.

In this formation the kinematic boundary condition seems to be lacking. Actually this
condition was introduced through the assumption that the free surface is a material surface.
In its mathematical form it is only needed when analyzing the free-surface elevation. For the
first derivative in time the following boundary conditions are found:
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-t 1 2 -V2 for y=O and r>a (7)
Ot -- V 2

and

a dV
at dt acos(O)-V 2 sin(20) for r=a and y<O. (8)

The angle, 0, is defined in Fig. 1.
Before proceeding to the solution for the actual problem, the condition at the intersection

point is investigated somewhat closer. The dynamic boundary condition on the free surface
does actually correspond to zero horizontal acceleration along the surface, y = 0: DulDt = 0.
By regarding the corresponding condition related to the boundary of the cylinder we have:

Dr, au 1 (u2 + v2 )

Dt y=,r=a at ax y=,r=a (9)

Taking into account that the velocity square is given from Eq. (3) as:

2a
4

U2 +v= 4
, (10)

we get:

1 a(u2 + 2) V2

= -2-. (11)2 ax y=O,r=a a

Furthermore, we can express au/at in terms of the time derivative of the stream function
along the cylindrical boundary as:

au 1 82 .. V2au 1 a~q, v2 (12)
at 0=a a at (12)

leading to:

Du V2

Dt-4 - (13)Dt a

when computed on the basis of the boundary conditions on the cylinder. Notice that in this
case the same inconsistency appears for the acceleration as the one found for the velocity
when regarding the 2-D wavemaker problem and for the second-order diffraction problem of
the vertical cylinder. The z log(z) singularity is thus expected to appear for the time
derivative of the complex potential for the present problem.
The actual solution of the boundary-value problem is developed along the following lines:

Assume that the time derivative of the potential is given on the free surface in the following
form:

D = F(x) . (14)at = F(x) .
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This boundary condition is then automatically satisfied if the time derivative of the complex
potential is written in the form:

8w(z, o)
at ) F(z) + iG(z), (15)

where F(x) and G(x) are real.
The boundary condition for G(z) on the cylinder is now determined from the original

condition and from F(z), in terms of sine and cosine expressions in mO. Recalling that

Im[log z +a I lzl=a,y=0 = -r/2, (16)

a solution satisfying the boundary conditions on the cylinder and the homogeneous condition
on the free surface can be developed. This solution is denoted by iH(z) in the following.

The asymptotic expansion of iH(z), as Izl--->o, is written as ih(zla). Subtracting the
function

iK(z) = i(h(z) - h()) (17)

(which satisfies the homogeneous boundary conditions on the two boundaries) from iH(z),
the required function, iG(z) is found.

The solution for the time derivative of the complex potential is developed as follows:

aw(z, ) dV a2 1 V2a 4 V 2 ]7 z [(z)\3 (
at dt z z4 I 3 az a z

-- {[i ( - + - ( ] (18)V2 1 a z 2 a zz -a
(18)

Notice that the (z - a) log(z - a) singularity appears in the expression, as indicated earlier.
A check on this formula is done simply by convincing oneself that the boundary conditions
Eqs. (7) and (8) are satisfied, together with the condition at infinity. The fact that awlat is
an analytic function ensures uniqueness. A corresponding check can be made on most of the
formulae developed in the present paper.

For the second derivative in time of the complex potential the following boundary
conditions are found:

at2 =-2v a -gv for y=O and r>a (19)

and

a2, d2 V dV a( (u2 + v2 ))
at2 dt d t -2u ax

au av
-(V+v)--+u-- for r=a and y=O. (20)at at~~~~~~~~~~~~~~~(0

Notice that gravity now appears in the problem. The solution to this problem is given in
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Appendix A. The most important aspect of this solution is that the singularity at the
intersection point is of the log(z) type, together with a weaker one, of the z (log(z))2 type.
This corresponds to the results found for the 2-D wavemaker by Lin [4], with the only
difference that it now appears for the second derivative in time instead of for the first
derivative. The basis for the results for the small-time expansion for the force, given by Vinje
and Brevig [15], was a Laurent series expansion in z of the time derivatives of the complex
potential. This solution hid the logarithmic singularity completely (the series expansion can
be shown to converge to Eq. (18)), but due to the finite first derivative in time of the
free-surface elevation, the time derivative of the force could be computed. Notice that the
second derivative in time of the free surface elevation at the intersection point has to be
taken into account to compute the second derivative of the force. This has a logarithmic
singularity at that point, which, at best, requires that special care should be taken when
evaluating the integral. Another question that might be raised is if the force can be
computed from the outer solution of the problem. It is not obvious that this could be done,
but if the inner solution is valid in a thin layer close to the cylinder (which is the basis for
calling it "the inner solution") and basically close to the intersection point, application of
ideas similar to those leading to Prandtl's boundary layer theory (about the pressure given
from the outer solution) seems to make sense. The force acting on the cylinder is then
computed as:

Fy(O)=2pa [L at +(u2+v2)+ gy] sin(). dO (21)

and after introduction of Eq. (18):

2 2 dV 8
Fy(O) = rpga -2 rpa2 d+ 8 paV2 , (22)

which corresponds to the result of Vinje and Brevig [15]. The first term corresponds to the
familiar buoyancy force, the second to the common inertia term, and the third is due to the
nonlinear effects. Notice that the third team is positive, independent of the sign of the
velocity.

Appendix A makes it clear why the computation of the time derivative of the force is
omitted in the present investigation. The result from Vinje and Brevig [15] indicates that it is
positive. Vinje and Brevig [13] were concerned about the difference between the results
found by Faltinsen [12] and those presented by Vinje and Brevig ([13], [15]). The
comparison is shown in Fig. 2. The difference between the two solutions seems to appear in
the second derivative of the force at time equal to zero. This component would be computed
on the basis of the third derivative in time of . This has a 1 /z singularity at the intersection
point, at the same time as an integration has to take place up to a level which is computed on
the basis of the second derivative in time of the elevation at that point. This integral most
probably does not exist. In that case, the different ways Faltinsen and Vinje and Brevig
treated the intersection point problem might very well explain the differences between the
results. In that case the most probable answer to the question raised by Vinje and Brevig [13]
is that neither Faltinsen nor Vinje and Brevig have computed the "correct" force. A solution
of the "inner", nonlinear problem might resolve this question, but so far this solution has not
been calculated; what has been published so far is based on linear theory.

The time derivative of the free surface elevation is computed as follows:
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Drq 077 an
D-T a-+u x = for y=O, x>a.Dt at+ ax

Taking into account the initial condition on the free surface we get:

a,
t =v for y=O and x>a.

For the second derivative we have:

D2,1 a21 Dv av
Dt2 t2 Dt t for y = O, x > a.

To arrive at the last expression, the initial conditions for F4 and for a' have been introduced,
together with the equation of continuity. The expressions in terms of x for the two time
derivatives become:

Oar a
- = -V -2 for y=O and x>aat x

and

a271 dV a2 2V2 x -a (x\4 x 2 (a2 (a
at2 dt x2+ 7x °g( (x+ (a) ]

4V 2 x a )2 (a) 2]
+ x ( + x) [3() + 1 + 3(a)2] 

Here we observe the expected logarithmic singularity at the intersection point.

Horizontal translation of a semi-submerged cylinder

(26)

(27)

Assuming that the semi-submerged circular cylinder starts impulsively from rest with a
horizontal velocity U, the complex potential at t = 0 is written:

Ui (z log(z -a) \
w(z) (1 + i)to Ui- ) z +a)(28)r z \a/

near

theory

Fig. 2.

(23)

(24)

(25)
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which satisfies the condition = 0 on the free surface (y = 0) and T = Ua sin(O) on the
cylinder. This potential clearly has a (z - a) log(z - a) singularity at the intersection point
between the free surface and the cylinder. Introducing the variable ; = z - a, and letting
a--> while is of order 1, the complex potential takes the form:

w()- 2 i l o g ( ~ a) [1 + O( )], (29)IT g 2a, [i+O2a-J (29)

which satisfies the condition = 0 for y = 0 and P = Uy for (x = a, y < O0). These are the
boundary conditions for the infinite-depth wavemaker, and the correspondence between the
present solution and that of the 2-D wavemaker is established.

Grosenbaugh and Yeung [14] introduced a different initial condition for their numerical
investigation of the bow-wave problem. They assumed that their 2-D body was at rest, being
exposed to a current which was uniform at infinity. The free surface was assumed to be flat
for t = 0. This corresponds to the condition T = 0 for y = 0. In this case the intersection point
is a stagnation point in the fluid, and no problems regarding singularities are expected. In the
following this problem will be investigated somewhat further. For this purpose the geometry
has been simplified to that of a semi-submerged circular cylinder. In contrast to the work of
Grosenbaugh and Yeung, the free surface on both sides of the structure have been regarded.
The cylinder has been assumed to be stationary, and being subject to a uniform, parallel flow
at infinity. The geometry is given in Fig. 3, where the boundary conditions are given as well.

For this particular problem the value for [a'((I + i)lat]t= o is given once the value of
ano(/at"I,=o = F,(xla) is given on the free surface as:

a( + it) i Fz 1 z - a
atn t=0 = F (z) r -±[F(a) -F(z) ] 1og(z + a)

(30)+ ' [K n() Kn(a)] (30)

where Kn(zla) is determined from the condition:

lim [Fn(z) og(z -a) - Kn(a)] =0 (31)

and

.X y

CgO

rt-0

(4 1 

ate
- ° . or c.o

Fig. 3.
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lirz [K.(z)] O- (32)

This solution requires that limx,,, Fn(xla) =constant and that Fn(zla) does not have
branchpoints at z = -a, which in turn means that the n-th derivative in time of the complex
potential, computed according to the formulae, will not get a log(z - a) singularity, as long
as Fn(z a) is analytic for z = a.

The complex potential for t = 0 is simply given as:

') + il,=o =-U \a + z) . (33)

The condition that p = 0 on the free surface then yields:

a4I 12 - - U 2 2
at =oy=0 =--ulr= y=O - 2 (a)2)2 (34)

and accordingly:

K z (35)
K'a) a [(a) 3 a' (35)

which finally leads to:

(d+iP) =-2½U2 1-

- - (36)

+i7T [(1 3 - z )

-i-[(z)3_(a)3 _ 5(z _a)] (36)

The complex potential does, as is easily shown, behave as follows:

a(D + i)/at,=o - -[8iU2 ira3] (z - a)3 log(z - a) . (37)

For the next derivative, a2 /lat2 1=y0,=, we get:

a 2i au 2 au 2 au
F2 (xla) = -2u- u - u - (38)

at2 at ax ax

where Eq. (34) has been utilized to arrive at the final result. Introducing the expression for
the horizontal velocity then yields:

2(a) - 2U3 (a)3 (1 (a)2)2)

From this expression it is already seen that the second derivative of the complex potential
with respect to time will have the same singular behaviour at z = a as the first derivative,
namely a (z - a)3 log(z - a) singularity. From Eq. (39) we develop:

2( 4U [(Z)66 5 (Z)4 8 (z) + 8 
a -a 3 a 15 a 105
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and accordingly we get for a2(C) + i)/at 2 1,=0 :

a2((i + ) _ _2U3 (a)3 ( 1 )2)2

t2 t=0 a z

2iU3 [( a),(, -a
+ 2iU3 (a)3(1_ (a)2)2 _ ()3 (1 ()2)2] log( - a )

4iU3
z\ 5 (Z\4 8 Z\2 a\6 5 6 a\4 8 (a\

7ra L~a 3 a 15315 z 3 \

(41)

So far the boundary condition on the free surface has been developed from the tangential
velocity along this surface alone. For F3(x/a) this is not the case any longer. The boundary
condition on the free surface for the third derivative in time is given as:

a3 I 2 u 2 3 2u 2(O 2 Ov
at3 =-3u (ax -u x2 at ( at(42))

Notice that for the first time gravity comes into effect, through the last term. To evaluate this
expression, we have to determine (av/dt) on the free surface from Eq. (36). The result is
given as:

av 2 2U2 3 {[(x) (x) _ (a)+ (a)] og(x a )

+ 2taJ - 3 - 3 tx + 2tx J (43)
+2a) 3 3 )2 +(a)4(

Due to the logarithmic term in Eq. (43), F3 (zla) does not satisfy the conditions required for
application of Eq. (30). Special care has to be taken when Fn(xla) involves terms of the
form:

Fn(x/a) = G,(xla) log((x - a)l(x + a)), (44)

where Gn(zla) is an analytic function, or of the form:

An(xla) = R,(xla) [log((x - a)l(x + a))]2 , (45)

where Rn(zla) is an analytic function. The first expression will give a contribution to the n-th
derivative of the complex potential in time of the following form:

Fn (z) 2ri [Gn(z/la)- G (a)] log( -a )

[Gn() + Gn +i [H( -H(- (46)

where H,(zla) is introduced to satisfy the condition at infinity. The second expression leads
to a contribution of the form:

n(a) q- + g -- t Rn( ) ] log(-+a) + i[n() - n(a)]

37r[ [n(a)- n(z)] g(+a-a)} '[Rn(Z) -R. - /Z--a~`13 (47)A z2,z)+ a
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where L,(zla) is introduced to satisfy the condition at infinity.
By regarding Eqs. (43), (46) and (47), it becomes clear that the singular behavior of the

third derivative of the complex potential with respect to time will be of the form:

(z 2 - a2) 2 [log((z - a)/(z + a))]2 , (48)

which, in turn, points to a (Z2 - a2 ) [log((z - a)/(z + a))]" singularity for the fourth deriva-
tive, where n takes the values 1, 2 or 3. This, in turn, means that the fourth derivative in
time of the complex velocity will have a log((z - a)/(z + a)) singularity. The singular
behavior for this problem is thus much weaker than for the first problem discussed in the
present paper.

The horizontal force acting on the cylinder can be expressed as follows:

Fx(t) = pa J cos(O) t + (u 2 + 2) + ga sin()] d , (49)

where 0(0) = -rr and 02(0) = 0. The integrand has to be computed at the cylinder surface.
We will now regard the force for t = 0. From the basic theory for potential flow around

circular cylinders we can deduce that the contribution to the horizontal force from the
velocity-square term is identically equal to zero. It is not surprising that the contribution
from the static pressure is zero as well. From the fact that the "acting pressure" on the free
surface (Eq. (34)) is symmetric about the y-axis we can conclude that a/lat is symmetric
about the same axis. (One can reach the same conclusion by examining Eq. (36).) This, in
turn, means that the contribution to the horizontal force from ad/lat is zero. Finally, FX(0) is
zero.

The vertical force is given as follows:

F(t) = pa (t) sin(0) [ +(U 2
+ v2) + ga sin(O)] dO . (50)

The contribution from the static term is, as should be expected, equal to the buoyancy of the
semi-submerged cylinder. The force from the velocity-square term is evaluated from the
dipole potential and is formed to be -8paU2 /3. The contribution from (aF/dt) becomes
8paU2/15, which amounts to 1/5 of the contribution from the velocity-square term. The final
result is:

t- 232 2
Fy(t)= 2 pga - 5 paU2. (51)

The time derivative of the horizontal force is computed as follows:

dF(t) l Id d 01
dt |= -a[ dt p(O = 02, r = a) cos(02 ) - dt P(1 = , r os(O )

-a 0 cos(0) a do, (52)

where (dQO/dt),=o and (dO2 /dt),=o are zero, due to the initial condition that the vertical
velocity at the free surface is zero. Accordingly we have:

dF (t) =pa a2z 1 a(U2 + 2) 
dt L Lt- 21 at = ] a cos() d . (53)

The contribution to this integral from the time derivative of the velocity squared is zero. This
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can readily be seen from symmetry and asymmetry about the y-axis. The contribution to the
integral from the log-related term of Eq. (40) is positive, but is more than balanced by the
contribution from the term introduced to account for the conditions at infinity. The total
integral becomes:

dF(t) 112 (5
dt ,= -315ir pU = -0.113 pU3 .(54)

The sign is negative, as should be expected, and indicates a resistance proportional to U2

after a finite time has elapsed.
The free surface elevation is determined from the kinematic condition:

D"(7-y) | = D'(71-y) =0 (55)Dt 

and the initial condition:

i71,=0 = UV,=O,y=o = 0. (56)

Accordingly we get for the derivatives of 7 in time:

=0, (57)
at ,=0 

a_2_ aV (58)
at2 t=o at y=O,t=O

and

a3 ra2v a U V

at3 a = Lat2 ax u t)/y=,t= (59)

The term (a2,7lat2),,=o is found directly from Eq. (4) as:

a2,/ 2U2 f a [(x 2 a 2 X a 2 (x -a) 1_1 _ + -+ 
at2 ,=o Ira {(x)[( a) +l () a (x +a)

+2(x\ 2 4 4 6a\2 +2a\4(0)
+2ta3 - 3 - 3 2X} (60)

The second derivative of i, in time is thus symmetric about the y-axis, which is consistent
with FI,= being zero. No tendency of the formation of lee waves is observed so far.

Let us now regard the expression for the third derivative of 7 in time (Eq. (59)). From the
discussion about the symmetry relationship of (av/dt)ly=,t=0 given above, and from the fact
that u(x) is a symmetric function about the y-axis, the second term on the right-hand side of
Eq. (59) is found to be asymmetric. From Eq. (40) it is clear that (a2 vIt 2 )y=O,=0 will be
asymmetric as well. Accordingly: (a3 q7/at3 ),=o will be asymmetric, and creation of lee waves
will now start to take place. This is consistent with dF(t)/dtl,=o being negative.

Comments on the inner solution of the problem of the heaving cylinder

As mentioned in the Introduction, the solution discussed above has to be regarded as the
outer expansion (in space) when the time goes to zero. Consistent with the work by Roberts
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[5] and by Joo et al. [6], the time development of the linearized problem for small time
should be evaluated, and because the singularity is of second degree in the velocity, the time
development of the second order problem should also be carried out. The first-order
problem of the heaving cylinder has, in reality, been solved by Ursell [16], Maskell and
Ursell [17] and Faltinsen [12]. This solution is based on the multipole expansion introduced
by Ursell [18], and is developed for the forces acting on a heaving cylinder, and for the
motion of a freely floating cylinder, starting impulsively from rest. The results are therefore
not directly applicable to the present problem. In addition, the multipole expansion makes
the solution less attractive for the asymptotic expansion for small times. To illustrate the
effect, an "equivalent wavemaker" will be introduced (see for instance: Greenhow and
Simon [19]). Since the solution of this "wavemaker" problem only qualitatively represents
the heaving-cylinder problem, the solution will not be discussed in much detail, and only for
the linear problem. Let us assume that a vertical boundary is situated at x = a (see Fig. 4)
and that the boundary condition at this surface is introduced by the horizontal velocity given
for the heaving cylinder in Eq. (3):

at 2Va3y
u(y t)x=a y (a2 + y2)2 (61)

The total flux through this surface is (-Va), as should be expected, and the velocity normal
to the vertical surface decreases from u = 0 at the free surface, reaches a minimum (of about
-0.65V), and approaches zero for y- -oo. The small parameter in the present problem is
the velocity V, which is assumed to be constant in time.

In contrast to what was done by Kennard [20], Roberts [5] and Joo et al. [6], the problem
will be solved by means of a source distribution along the vertical boundary. The complex
potential of a time-dependent source is given in Wehausen and Laitone [21], Eq. (13.54),
which is written (after a misprint in sign has been corrected) as:

w(z, t; c) = Q(t,) log ( + c )

- JQ(r, c) d f (gk) - 2 sin[(gk)l 2(t - T)] exp(-ik(z - c*)) dk (62)gf7To(2

, . -va

*0

Fig. 4.
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where c = i is the complex coordinate of the source point, c* is the complex conjugate of c,
and Q(T, c) is the source intensity at z = c at time r. Once the stream function along the
vertical boundary is known, the source intensity is found from continuity:

Q(t, C) aP( ;, t)
2 y u(s, t)x=a = u(), (63)

where u(s) is given in Eq. (61). The free-surface elevation is found as
= - 1/g. (a / at)y= 0, which gives (corresponding to Kennard (1949)):

1 f= cos(kx)QL(ka)(gk)_ /2 sin((gk) /2 t) dk (64)

where x is the local coordinate being zero at the line source. QL(ka) is given as:

QL(ka)= |Q() e-k d . (65)

The outer expansion of 7 for small t is found by letting t-- 0 and keeping the leading term in
the series expansion of the sine function. The coordinate x takes a finite value. The integral
expression for QL(ka) is introduced in Eq. (64), and the integration is first taken over k.
After this integration has been performed, we are left with the expression:

4Va 3t fo 2

(x, t)t_0+ = - ( 2 + 2)2(X2 + 2) d . (66)

This integral is evaluated by elementary methods, yielding:

Va2t
(X, t), 0 =- (a + )2 (67)

which corresponds to Eq. (26) (keeping in mind the difference in the definitions of x), and
constitutes the first approximation to the outer expansion. Further approximations are found
by introducing the remaining terms of the Taylor expansion of the sine function. The effect
of gravity will be introduced in the next approximation.

The inner expansion is found by assuming that both x and t approach zero at the same
time. To establish this solution, the integral will be studied in somewhat more detail. First of
all we have:

QL(ka) = fo Q() e - k ; d; = 2Va(ka f(ka) - 1). (68)

The function f(z) is the auxiliary function of the cosine and sine integrals (Abramowitz and
Stegun [22], Ch. 5):

dy2
f(z) = J exp(-zy) 1 y2 = Ci(z) sin(z) - si(z) cos(z), (69)
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giving QL(ka) as a non-oscillatory function of ka. Introducing the variable a = (gk)l/ 2t as a
dummy variable in Eq. (64), one gets:

(x, t) = QL 2 cos(a 2 X)sin(a) da (70)

where X = xlgt2 is a dimensionless variable which may, or may not, be of order one when t

and/or x go to zero. Notice the correspondence between the expression for the free surface
elevation in the present problem and the expression for the velocity potential for the
Cauchy-Poisson problem as given by Lamb [23]. When X < 1 the integral of Eq. (70) can be
recast in the form:

2t 2o~ [ fi2agt2 /2 )
r)(x, t) =X- QL( ) cos- ) sin( d (71)

by introducing the variable /3 = aX. The trigonometric functions combine into:

2 cos(,32 /X) sin(P/X) = -sin(R(f32 - /3)) + sin(R(3 2 + /3)), (72)

where R = 1/X > 1, and the method of stationary phase (see: Erdelyi [24], Ch. 2.9) can be
applied to the first term. The stationary point is 3 = , and the leading-order contribution to
the integral from this term is found to be:

~')= 4~ V-2a 1/2
X)3/2 4x 2 gt2 r

7r(x, t) =4 g a (73)

The function -7q is oscillatory, with a strongly decreasing amplitude and "wavelength" as
x - 0. The oscillatory behavior is much like what was reported by Roberts [5] and Joo et al.
[6]. The contribution from the second term of Eq. (72) is found in a different way. This
contribution to the integral is expressed as follows:

/2(x, t) -2 1(gx)l/2 (R + ,)-112 sin(Y)QL (4 ) dy (74)

where the approximation:

((R + y)" 2 - R1/ 2)2 y 2/4R (75)

is introduced, being valid for yIR < 1. Assuming that (a/x) is of order R3 /2 the QL function
will be small for finite values of y. This, in turn, means that the integral can be approximated
as follows:

7 2(x, t) - 2r2(gxR)/2 JOQL ) dy-a - QL(Z) dz

2 Vt - ( 1 -zf(z)) dz (76)
0/

where f(z) is given in Eq. (69). From the relations between the auxiliary functions of the

187



188 T. Vinje

cosine and sine integral (Abramowitz and Stegun [22], Ch. 5), the last integral can be shown
to take the value (7r/2), and we finally get:

772(x, t) - -Vt,

which is equal to the inner limit of the outer expansion for small t. This is not surprising in
view of the absence of a singularity in the outer solution. Furthermore, the approximations
made for the integral (Eq. (76)) are actually the same as assuming that both x and t are small
in Eq. (64). This contribution, Eq. (77), is of order (1), and is valid for (gt2 /4x) > 1 and
x < a. The oscillatory ml1 term is significantly smaller than 72, which, in principle, corresponds
to the solutions given by Roberts [5] and Joo et al. [6].

The interesting point regarding the outer solution for the heaving cylinder is that the
z log(z) singularity appears for the derivative in time of the complex potential, and is
quadratic in the "small" parameter, V. To investigate this solution further, the initial-value
problem for the second-order expansion has to be found. In this case the wavemaker
approximation might still make sense, but most probably the proper solution for the circular
cylinder has to be investigated. The reason is that the inconsistency in the horizontal
acceleration at the intersection point, which causes the singular behavior, is due to the
curvature of the cylinder at that point. This information is, seemingly, absent in the wave-
maker approximation.

Concluding remarks

The investigation of the initial-value problem of a semi-submerged circular cylinder, starting
from rest, shows that the small-time outer expansion of the velocity potential has a z log(z)
singularity at the intersection point between the free surface and body in one of the
(Eulerian) time derivatives. For the heaving cylinder, starting impulsively from rest, it occurs
in the first derivative. Starting the motion with an impulsive acceleration will only transfer
the singularity to the second derivative. For a cylinder moving horizontally with an impulsive
velocity, the same problem occurs as is the case for the 2-D wavemaker: the z log(z)
singularity appears in the velocity potential. By introducing a uniform flow at infinity,
starting "impulsively", the singularity occurs in a much higher derivative.

All investigations so far (Chwang [3], Lin [4], Wang and Chwang [25] and the present)
seem to indicate that the outer expansion of the problem, formulated in terms of a Taylor
series in time, with space-dependent coefficients, does not converge (at least not uniformly)
at the surface of the body. The inner expansion (of the linear problem) is finite in the actual
domain close to the body and shows an oscillatory behavior, with rapidly decreasing wave
lengths when approaching the surface of the body.

There is no doubt from present experience that the semi-Lagrangian (and other) numerical
simulation procedure actually simulates the outer solution of the problem. To what extent it
is possible to recapture the rapidly oscillating inner solution by use of the presently available
nonlinear simulation tools is a moot question. If it makes any sense trying to do so is another
question. The "wiggles" of the inner solution are not observed in model tests (see: Lin [4]
and Joo et al. [6]) have shown that they are removed by introducing surface tension. They
have further shown that introduction of surface tension does not alter the singular behavior
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of the outer expansion (see: Lin [4] and Joo et al. [6]), and surface tension is thus of little
help in "improving" the numerical schemes. It would seem that singularities remain an
integral part of the potential when trying to integrate the solution numerically.

From the discussion in the present paper the question might be raised if the singularity of
the time derivative, for otherwise well-behaved problems, would be reflected in the
numerical solution. No problems of this kind were reported by Faltinsen [12] or by Vinje and
Brevig [13] when solving numerically the heaving-cylinder problem. This does not mean that
the singularity in the time derivative will not appear. The results reported by Faltinsen and
by Vinje and Brevig were found for rather large panel sizes on the free surface, which may
have suppressed the development of the singularity. Furthermore, both procedures involved
a certain spatial smoothing in the determination of the velocity at the free surface. This
velocity was used when integrating the kinematic boundary condition to move the free-
surface elevation forward in time. It would be of certain interest to have verified if, or if not,
the singularity in the higher derivatives would be reflected in the numerical simulations.
Furthermore, it would be of some interest to have the results of Fig. 2 recomputed, to see if
the time history of the force depends on the treatment of the intersection point. In view of
the development in computer technology since 1976-1980, a proper investigation of these
problems would not be as difficult a task today as it was then.

Appendix A. The solution of the problem defined by Eqs. (19) and (20)

The solution consists of the three contributions, defined from:

(1) The contribution due to the inhomogeneous free-surface condition.
(2) The contribution due to the inhomogeneous body boundary condition.
(3) The contribution due to the conditions at infinity.

The three contributions are denoted w1,,, w2t,, and W3,, respectively. The three contributions
are found to be:

2VVa gVa 8V3a2 Z 2 (a 2]
Z Z2 +3 ( + z) [3( 1 + 3(-+ 4aTZ ) Z2 , aA1

4V3a2 z - a 2

+ z+a a + z ' (A.1)

( d2V a2 i/V i z - a \4- a\4 + \3 /a\31
dr / r z \Z- a/L a /\Z , a/ z

i+a +('+ z + ( 3_ + 3 ( + + (a) + (a }a (\a/\a/al +/ z/ \z/

8iV 3 \(/z6 z4 z2a2a4 a6 
+ 32a 1V~Z + a~J~a T q~j T qaj + 3

+ 3-a (z + a){ ) +4() + 4(z) 2 4(a) 2 (a) 4 6 }

+ [ 2 Log(z - _ (2{ + _ () (A.2)
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2iv r z \ 3 11 (z 11 a) (a31
iVV [2()3+ - 2 -13] r La 3 ta 3 t Z Z--

_ [() ()+ ()3 (a__ -- +3 a)5__ ()]

8iV3 [3(3 . 5)5 - I3()(-A8iV3 Z 5 3 ( 3 25 z) 25 a) (a)s (a7

+ 37ra L 3(a) + 5a) + 3 (a) - _ T ) - 5z) - 3(Z) | (A.3)
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